1
2
3
4
5
6
7
8
9
10
CHAPTER B: BENCHMARK PROBLEMS; KNOWN NUMERICAL SOLUTIONS OR DATA
Shortcuts:
Problem B.01: SQUARE CAVITY WITH MOVING WALL
Problem B.02: NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE (Heat Transfer by Laminar Natural Convection Within Rectangular)
Problem B.03: NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE
Problem B.04: NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE
Problem B.05 - NATURAL CONVECTION IN A TRAPEZOIDAL BOX >>> C41
Problem B.06: NATURAL CONVECTION IN TWO ECCENTRIC CYLINDERS
Problem B.07: NATURAL CONVECTION IN TWO ECCENTRIC CYLINDERS
Problem B.08 - COAXIAL SWIRLING FLOW
Problem B.09: SPLIT FLOW IN A BIFURCATED CHANNEL WITH OPEN BOUNDARIES
Problem B.10 - TURBULENT DEVELOPING FLOW IN A CHANNEL
************************************************************************ TITLE Problem B.01: SQUARE CAVITY WITH MOVING WALL ************************************************************************
/
GRID NODEs BY 22 BY 22
/
COORDINATE X RANGE 1
COORDINATE Y RANGE 1
/
WALL at all outer boundaries
BOUNdary U: at boundary Y+, VALUE=1.
/
LAMINAR flow
VISCOSITY 0.01
/
DIAGNOSTIC NODE U V P RU RV AT (6,6) Every 20
DEBUG GEOMERTY OFF
FLUX DEFAult output OFF
SELEct from (1,1) to (999,999) interval (2,2)
OUTPut for SELEcted window
SAVE OFF U,V,P, ON 'B01.SAV'
/
CONVERGENCE REFERENCE for U in LOCAL mode 1.E-6
SOLVE FOR 1000 STEPS IN STEADY MODE
/
END
/
-Back To Top
***********************************************************************
TITLE Problem B.02:
NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE
***** Height/Length Ratio of 10
***** Heat Transfer by Laminar Natural Convection Within
Rectangular
***** Enclosures: by M.E. Newell and F.W. Schmidt
*****
///// OPTION 1
***** Natural Convection Simulated by BOUSsinesq approximation
***********************************************************************
/
GRID NODEs 22 by 32
/
WALL at all outer boundaries
/
COORDINATE X RANGE = 0.1
COORDINATE Y RANGE = 1
/
SET T=300 EVERYWHERE
/
BOUND T X- VALUE 300
BOUND T X+ VALUE 302
BOUND T Y+ FLUX = 0.
BOUND T Y- FLUX = 0.
/
//////////////////////////////////////////////////////////////////////////
***** Commands to simulate Natural Convection by BOUSsinesq
approximation
/
DENSITY 1.178 everywhere !Reference temperature 300
/
***** From gas law for density: dRHO/dT = -RHO/T
***** Over the range of convern; dRHO/dT_avg = -1.178/301 =
-0.0039136
/
PROBlem BOUSINESQ T dRHO/dTemperature = -0.0039136, Tavg=301
GRAV 0. -10.
/
//////////////////////////////////////////////////////////////////////////
/
VISCOSITY VALUE 3.086E-5
/
DIAGNOSTIC NODE U V P RU RV 5,5 PRINT EVERY 15 STEPS
/
OUTPut in NARROW mode
/
MATRIX SWEEPS P=7 times
/
CONVERGENCE REFERENCE for V in LOCAL mode epsilon = 1.E-9
/
SOLVE STEADY MAX 1000 STEPS
/
END
/
/
/
-Back To Top
***********************************************************************
TITLE Problem B.03:
NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE
***** Height/Length Ratio of 10
***** Heat Transfer by Laminar Natural Convection Within
Rectangular
***** Enclosures: by M.E. Newell and F.W. Schmidt
/
///// OPTION 2
***** Convection Simulated as source term in V equation
***********************************************************************
/
GRID NODEs 22 by 32
/
WALL at all outer boundaries
/
COORDINATE X RANGE = 0.1
COORDINATE Y RANGE = 1
/
SET T=300 EVERYWHERE
/
BOUND T X- VALUE 300
BOUND T X+ VALUE 302
BOUND T Y+ FLUX = 0.
BOUND T Y- FLUX = 0.
/
//////////////////////////////////////////////////////////////////////////
***** Natural Convection by source term for Momentum equation
/
DENSITY 1.178 everywhere !Reference temperature 300
/
***** The value of the source coefficient is -drho/dt * g
***** No explicit specification of GRAVity; it is included in
source term
/
SOURce for V LINEar function of 0. +0.039136 * T per unit VOLUme
/
***** In this option a term equal to RHO_avg * G * Y is added to P
***** Hence the following to provide initial estimates of P and
wall P
/
SET LINEAR P = 0.01 -11.78 * Y ! near hydrostatic for smooth start
WALL P EXTRapolated Linearly at all walls
/
//////////////////////////////////////////////////////////////////////////
/
VISCOSITY VALUE 3.086E-5
/
DIAGNOSTIC NODE U V P RU RV 5,5 PRINT EVERY 15 STEPS
/
OUTPut in NARROW mode
/
MATRIX SWEEPS P=7 times
/
CONVERGENCE REFERENCE for V in LOCAL mode epsilon = 1.E-9
/
SOLVE STEADY MAX 1000 STEPS
/
END
/
/
/
-Back To Top
***********************************************************************
TITLE Problem B.04:
NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE
***** Height/Length Ratio of 10
***** Heat Transfer by Laminar Natural Convection Within
Rectangular
***** Enclosures: by M.E. Newell and F.W. Schmidt
/
///// OPTION 3
***** Convection Simulated by coupling of gravity and variable
density
***********************************************************************
/
GRID NODEs 22 by 32
/
WALL at all outer boundaries
/
COORDINATE X RANGE = 0.1
COORDINATE Y RANGE = 1
/
SET T=300 EVERYWHERE
/
BOUND T X- VALUE 300
BOUND T X+ VALUE 302
BOUND T Y+ FLUX = 0.
BOUND T Y- FLUX = 0.
/
//////////////////////////////////////////////////////////////////////////
***** Natural Convection by coupling of gravity and variable
density
/
GAS molecular weight 29
DENSITY GAS LAW
/
/
GRAV 0. -10.
/
***** In this option a term equal to RHO_avg * G * Y is added to P
***** Hence the following to provide initial estimates of P and
wall P
/
SET LINEAR P = 0.01 -11.78 * Y ! near hydrostatic for smooth start
WALL P EXTRapolated Linearly at all walls
/
//////////////////////////////////////////////////////////////////////////
/
VISCOSITY VALUE 3.086E-5
/
DIAGNOSTIC NODE U V P RU RV 5,5 PRINT EVERY 15 STEPS
/
OUTPut in NARROW mode
/
MATRIX SWEEPS P=7 times
/
CONVERGENCE REFERENCE for V in LOCAL mode epsilon = 1.E-9
/
SOLVE STEADY MAX 1000 STEPS
/
END
/
/
-Back To Top
************************************************************************
TITLE Problem B.05 -
NATURAL CONVECTION IN A TRAPEZOIDAL BOX >>> C41
***** K C Karki, 1986, Ph.D. Thesis, p.183
************************************************************************
/
GRID NODEs 42 by 42
COORdinate corners (0.,0.) (1.,-.2679491) (0,.3307291)
(1.,.5986782)
WALL at all outer boundaries
/----------------------------------------------------------------------/
/ Initial and Boundary Conditions
/
BOUN U VALU CONS X- 0.0
BOUN V VALU CONS X- 0.0
BOUN T VALU CONS X- 1.0
/
BOUN U VALU CONS X+ 0.0
BOUN V VALU CONS X+ 0.0
BOUN T VALU CONS X+ 0.0
/
BOUN U VALU CONS Y- 0.0
BOUN V VALU CONS Y- 0.0
BOUN T FLUX CONS Y- 0.0
/
BOUN U VALU CONS Y+ 0.0
BOUN V VALU CONS Y+ 0.0
BOUN T FLUX CONS Y+ 0.0
/----------------------------------------------------------------------/
/ Fluid Properties and Constants
DENSity 1.0
VISC 1.0
SPEC 1.0
PRAN EFFE 0.7
/----------------------------------------------------------------------/
/ Source and Sink Specifications
SOUR V LINE T VOLU 0.0 1.4285714E5
/----------------------------------------------------------------------/
/ SOLUTION OPTIONS
/
RELA U=0.3, V=0.3, P=0.1, T=1.
DIFF SECO SKEW U V P T
/
DIAGnostic output U V P T RP at (6,6) every 100 steps
DEBUG GEOMERTY OFF
FLUX DEFAult output OFF
SELEct from (1,1) to (999,999) interval (2,2)
OUTPut for SELEcted window
SAVE OFF U V P T on file 'B04.SAV'
/----------------------------------------------------------------------/
/ OPERATIONAL CONTROL
CONV GLOB 1.E-7
SOLVE U V P T STEADY 1000
/
END
/
-Back To Top
************************************************************************
TITLE Problem B.06:
NATURAL CONVECTION IN TWO ECCENTRIC CYLINDERS
***** (Eccentricity, E = 0.623)
***** K C Karki, 1986, Ph.D. Thesis, p.169
************************************************************************
/
GRID NODEs 42 by 42
GEOM ANNULus: R_out = 1.625, R_in=0.625 ecc = -0.623
GEOMetry ROTAte X and Y by 270 degrees
/----------------------------------------------------------------------/
/ Initial and Boundary Conditions
SYMM X-
SYMM X+
WALL Y-
WALL Y+
/
BOUN U VALU CONS Y- 0.0
BOUN V VALU CONS Y- 0.0
BOUN T VALU CONS Y- 1.0
/
BOUN U VALU CONS Y+ 0.0
BOUN V VALU CONS Y+ 0.0
BOUN T VALU CONS Y+ 0.0
/
LOCA ID=REG1 (1,2) (42,2)
SET FF LINE T ID=REG1 0.5971946 -0.5971946
/
LOCA ID=REG2 (1,41) (42,41)
SET FF LINE T ID=REG2 0.0 1.5527061
/----------------------------------------------------------------------/
/ Fluid Properties and Constants
DENSity 1.0
VISC 1.0
SPEC 1.0
PRAN EFFE 0.7
/----------------------------------------------------------------------/
/ Source and Sink Specifications
SOUR V LINE T VOLU 0.0 7.E4
/----------------------------------------------------------------------/
/ SOLUTION OPTIONS
RELA U=0.3, V=0.3, P=0.1, T=1.
DIFF SECO SKEW U V P T
/
DIAGnostic output U V P T RP at (6,6) every 50 steps
DEBUG GEOMERTY OFF
FLUX DEFAult output OFF
SELEct from (1,1) to (999,999) interval (2,2)
OUTPut U, V, T for SELEcted window
SAVE OFF U V P T FF on file 'B05.SAV'
/----------------------------------------------------------------------/
/ OPERATIONAL CONTROL
CONV GLOB 1.E-5 1
SOLVE U V P T STEADY 1000
/
END
/
-Back To Top
************************************************************************
TITLE Problem B.07:
NATURAL CONVECTION IN TWO ECCENTRIC CYLINDERS
***** (Eccentricity, E = -0.652)
***** K C Karki, 1986, Ph.D. Thesis, p.169
************************************************************************
/
GRID NODEs 42 by 42
GEOM ANNULus: R_out = 1.625, R_in=0.625 ecc = 0.652
GEOMetry ROTAte X and Y by 270 degrees
/----------------------------------------------------------------------/
/ Initial and Boundary Conditions
SYMM at X-
SYMM at X+
WALL at Y-
WALL at Y+
/
BOUN U VALU CONS Y- 0.0
BOUN V VALU CONS Y- 0.0
BOUN T VALU CONS Y- 1.0
/
BOUN U VALU CONS Y+ 0.0
BOUN V VALU CONS Y+ 0.0
BOUN T VALU CONS Y+ 0.0
/
LOCA ID=REG1 (1,2) (42,2)
SET FF LINE T ID=REG1 0.5971946 -0.5971946
/
LOCA ID=REG2 (1,41) (42,41)
SET FF LINE T ID=REG2 0.0 1.5527061
/----------------------------------------------------------------------/
/ Fluid Properties and Constants
DENSity 1.0
VISC 1.0
SPEC 1.0
PRAN EFFE 0.7
/----------------------------------------------------------------------/
/ Source and Sink Specifications
SOUR V LINE T VOLU 0.0 6.8571429E4
/----------------------------------------------------------------------/
/ SOLUTION OPTIONS
RELA U=0.3, V=0.3, P=0.1, T=1.
DIFF SECO SKEW U V P T
/
DIAGnostic output U V P T RP at (6,6) every 50 steps
DEBUG GEOMERTY OFF
FLUX DEFAult output OFF
SELEct from (1,1) to (999,999) interval (4,2)
OUTPut U, V, T for SELEcted window
SAVE OFF U V P T FF on file 'B06.SAV'
/
CONV GLOB 1.E-5 1
/
SOLVE U V P T STEADY 2000
/
END
/
-Back To Top
************************************************************************
TITLE Problem B.08 -
Coaxial Swirling Flow
**** McDonell & Samuelsen (570 swirler)
************************************************************************
/
GRID 48 by 44
/
WALLS by DEFAult
/
COORdinate X CORNers
0.0000E+00 1.5500E-03 3.2500E-03 5.6500E-03 8.2500E-03 1.1050E-02
1.4125E-02
1.7675E-02 2.1900E-02 2.6850E-02 3.2400E-02 3.8400E-02 4.4875E-02
5.1825E-02
5.9000E-02 6.6225E-02 7.3500E-02 8.0800E-02 8.8100E-02 9.5400E-02
1.0267E-01
1.0995E-01 1.1725E-01 1.2455E-01 1.3185E-01 1.3915E-01 1.4645E-01
1.5375E-01
1.6105E-01 1.6835E-01 1.7565E-01 1.8295E-01 1.9025E-01 1.9755E-01
2.0485E-01
2.1215E-01 2.1945E-01 2.2675E-01 2.3385E-01 2.4115E-01 2.4865E-01
2.5595E-01
2.6330E-01 2.7060E-01 2.7785E-01 2.8515E-01 2.9245E-01
/
COORdinate R CORNers CYLIndrical mode
0.0000E+00 1.0000E-03 3.0000E-03 5.0000E-03 7.0000E-03 9.0000E-03
1.1000E-02
1.3000E-02 1.5000E-02 1.6500E-02 1.7500E-02 1.8500E-02 1.9500E-02
2.0500E-02
2.1500E-02 2.3000E-02 2.5000E-02 2.7000E-02 2.9000E-02 3.1000E-02
3.3000E-02
3.5000E-02 3.7000E-02 3.9000E-02 4.1000E-02 4.3000E-02 4.5000E-02
4.7000E-02
4.9000E-02 5.1000E-02 5.3000E-02 5.5000E-02 5.7000E-02 5.9000E-02
6.1000E-02
6.3000E-02 6.5000E-02 6.7000E-02 6.9000E-02 7.1000E-02 7.3000E-02
7.5000E-02
7.6000E-02
/
INLET X-
OUTLET X+
SYMMETRY Y-
/
DENSity = 1.17
VISCOSITY 1.85E-5
/
/TURBulence model KE
/TURBulence model RNG
TURBulence model CUBIc K-E in PASSIVE mode without Vel source
terms
/
/INITIAL GUESSES
SET U = 1.0
SET V = 0.0
SET W = 0.0
SET K = 1.0E-05
SET E = 1.0E-05
/
/INLET VALUES from experimental data
/
SET U ON NODE X-
-1.1310E+00 -1.1610E+00 -1.2400E+00 -1.2560E+00 -1.3250E+00
-1.3930E+00 -1.4620E+00 -5.3600E-01 2.7500E-01 2.6350E+00
4.8800E+00 6.4630E+00 6.5780E+00 4.8180E+00 2.7950E+00
9.5500E-01 1.0310E+00 1.1070E+00 1.2090E+00 1.3110E+00
1.4060E+00 1.5020E+00 1.6150E+00 1.7280E+00 1.7730E+00
1.8190E+00 1.8560E+00 1.8920E+00 1.9130E+00 1.9340E+00
1.9870E+00 2.0400E+00 2.0730E+00 2.1070E+00 2.1400E+00
2.1740E+00 2.2090E+00 2.2450E+00 2.2480E+00 2.2510E+00
1.7310E+00 1.3400E+00 ! -1.1210E+00 0.0000E+00
/
SET V ON NODE X-
0.0000E+00 1.4100E-01 4.3300E-01 7.4300E-01 9.9900E-01
1.2010E+00 1.3680E+00 1.4340E+00 1.5550E+00 1.8240E+00
2.7710E+00 3.4440E+00 3.2030E+00 3.1900E+00 2.2110E+00
5.3800E-01 -4.2700E-01 -9.2400E-01 -9.5200E-01 -7.8800E-01
-7.0300E-01 -6.7800E-01 -5.9200E-01 -4.4400E-01 -2.9600E-01
-1.4800E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 ! 0.0000E+00 0.0000E+00
/
SET W ON NODE X-
2.7000E-02 1.0700E-01 2.0900E-01 3.2100E-01 3.9200E-01
4.6400E-01 5.3500E-01 1.1650E+00 1.7170E+00 4.4780E+00
7.1600E+00 9.0060E+00 7.8230E+00 5.6260E+00 3.2160E+00
1.7300E+00 9.0800E-01 8.6000E-02 1.4000E-01 1.9300E-01
1.4700E-01 1.0100E-01 7.9000E-02 5.8000E-02 1.0000E-03
-5.6000E-02 -5.9000E-02 -6.2000E-02 -7.8000E-02 -9.4000E-02
-1.0200E-01 -1.1100E-01 -1.5800E-01 -2.0400E-01 -2.5100E-01
-2.9800E-01 -3.7400E-01 -4.5100E-01 -5.5800E-01 -6.6600E-01
-5.1500E-01 -4.0200E-01 ! 0.0000E+00 0.0000E+00
/
SET K ON NODE X-
1.4086E+00 1.3624E+00 1.3438E+00 1.2239E+00 1.2277E+00
1.2236E+00 1.2164E+00 3.2902E+00 6.4943E+00 1.2866E+01
2.1621E+01 2.3127E+01 2.3170E+01 2.2589E+01 1.7133E+01
1.2051E+01 6.0249E+00 1.9246E+00 8.7584E-01 4.2535E-01
3.9442E-01 3.6650E-01 4.3018E-01 4.0374E-01 3.9276E-01
3.8420E-01 3.9235E-01 4.0113E-01 4.0848E-01 4.1789E-01
4.2513E-01 4.3347E-01 4.5188E-01 4.7138E-01 4.9075E-01
5.1122E-01 5.4419E-01 5.8011E-01 6.3156E-01 6.8457E-01
7.5951E-01 8.2400E-01 ! 1.4253E+00 1.3479E-02
/
SET E ON NODE X-
2.5307E+02 2.4072E+02 2.3581E+02 2.0496E+02 2.0593E+02
2.0489E+02 2.0310E+02 9.0345E+02 2.5053E+03 6.9859E+03
1.5219E+04 1.6836E+04 1.6883E+04 1.6252E+04 1.0735E+04
6.3327E+03 2.2387E+03 4.0419E+02 1.2408E+02 4.1994E+01
3.7498E+01 3.3587E+01 4.2710E+01 3.8834E+01 3.7261E+01
3.6049E+01 3.7203E+01 3.8458E+01 3.9520E+01 4.0894E+01
4.1961E+01 4.3201E+01 4.5984E+01 4.8991E+01 5.2042E+01
5.5331E+01 6.0770E+01 6.6885E+01 7.5977E+01 8.5741E+01
1.0020E+02 1.1323E+02 ! 2.5760E+02 2.3690E-01
/
/
DIAGNOSTIC NODE (15,5) print U,V,P,K,E every 20 steps
DEBUG GEOMERTY OFF
/
CONVERGENCE epsilon = 1.0E-8
SOLVE for 1000 steps in STEADY mode
!! CONVERGENCE epsilon = 1.0E-9 ! for full convergence
!! SOLVE max 2000 steps in STEADY mode ! Fully converged in about
1200
/
SELECT (1,1) to (999,999) frequency (4,4)
OUTPut U,V,W,P,K,E NARRow mode
SAVE OFF U,V,W,P,K,E,L,MU,RHO on 'B07.SAV'
/
END
/
-Back To Top
************************************************************************
TITLE Problem B.09: Split
flow in a bifurcated channel with open bndries
// S.R. Mathur & J.Y. Murthy 1997; Num. Heat Transfer, B, 32,
p283-298
************************************************************************
/
/GRID NODEs 122 by 82 <<< used for a finer grid
GRID NODEs 62 by 42
COOR X RANGE 6
COOR Y RANGE 4
DEBUG GEOMETRY OFF
/
WALL BY DEFAULT
LOCATE COORDINATE (0.00, 0.00) TO (2.00, 3.00)
BLOC SELECTED
LOCATE COORDINATE (3.01, 0.00) TO (6.01, 3.00)
BLOC SELECTED
/
LOCATE ID=INLET COORDINATE (0.0, 3.01) TO (0.06, 6.00)
INLET X- OF ID=INLET
LOCATE ID=OUT1 COORDINATE (5.90, 3.01) TO (6.00, 4.00)
LOCATE ID=OUT2 COORDINATE (2.01, 0.00) TO (2.98, 0.06)
/
OPEN X+ OF ID=OUT1
BOUND X+ OF ID=OUT1 P = 0.
/BOUND X+ OF ID=OUT1 GRAD U = 0.
/
OPEN Y- OF ID=OUT2
BOUND Y- OF ID=OUT2 P = 0.
/BOUND Y- OF ID=OUT2 GRAD V = 0.
/
SET U X- OF ID=INLET POLYNOMIAL in Y -48., +28., -4.
DENSity 1.0
VISC 0.01
/
MATRIX P=32
/
DIAGnostic output for U V P BP at (32,41) every 10 steps
/
FLUX DEFAult output OFF
/
SELECT (5,1) (999,999) (5,5)
OUTPut U V P NARROW selected
/
CONV GLOB 1.E-9
SOLVE STEADY 2000
/
END
/
-Back To Top
************************************************************************
TITLE Problem B.10 -
TURBULENT DEVELOPING FLOW IN A CHANNEL
/// P.L. Stephenson: Int J. H&M Trans. Vol 19, p.413-423, 1976
/// A Theoretical Study of Heat Transfer in Two-Dimensional
Turbulent
/// Flow in a Cicular Pipe and between Parallel & Diverging Plates
************************************************************************
/// This ANSWER input below explores the fully developed channel
flow
/// at Re=192000 described by Stephenson. Re number is defined on
the
/// basis of 2 times plate separation (H).
///
/// Three options are explored. All are based on half channel.
///
/ 1. A normalized input with fixed end pressures
/ H=2, Mu=4/Re, dpdx=1.80330E-3 (leads to U_bulk=1)
///
/ 2. A peridic flow with source of momentum = expected dp/dx
/// H=5, Mu=0.1593 and dp/dx= 6.7400E3 (leads to U_bulk=3059 cm/s)
///
/ 3. A developing flow with prescribed inflow at inlet; zero grad
outlet
/// H=5, U_bulk=3059 and Mu=0.1593
************************************************************************
/
/// Please replace TYPE specification by one of the following 3:
/ 1. NORMALIZED 2. PERIODIC 3. DEVELOPING
/
DEFINE TYPE = NORMALIZED <<< Put in the type of flow
/
****************************************************************
IF( TYPE = NORMALIZED ) THEN
****************************************************************
COORdinate Y RANGE 1 in normalized units
GRID NODEs 3 by 42
OPEN boundary at X-
OPEN boundary at X+
/
SET U 1
SET K 0.003
SET L 0.14
/
BOUND P 1.80330E-3 at X- ! leads to U_bulk=1.
BOUND P 0 at X+
BOUND K GRAD = 0 at X-
BOUND K GRAD = 0 at X+
BOUND E GRAD = 0 at X-
BOUND E GRAD = 0 at X+
/
VISCosity 2.083333E-5 !1/48000 to get Re=192000 of Stephenson
DIAGnostics for U K E at node (2,41) every 500 steps
/
ENDIF
/
****************************************************************
IF( TYPE = PERIODIC ) THEN
****************************************************************
/
GRID NODEs 3 by 42
PERIODIC X over unity length
COORdinate Y RANGE 2.5 units are cm for this one
SET U 3059 velocity in cm/s
SET K 3.0E4 turbulent kinetic enegry
SET L 0.35 length scale
SOURCE for U = 6.74000E3 per unit VOLUME !=dpdx; leads to U_bulk=3059
VISCosity 0.1593 !cm2/s
/
DIAGnostics for U K E at node (2,41) every 500 steps
/
ENDIF
/
****************************************************************
IF( TYPE = DEVELOPING ) THEN
****************************************************************
/
GRID NODEs 102 by 42
COORdinate X RANGE 100.0 1.05 units are cm this one
COORdinate Y RANGE 2.5 units are cm for this one
INLET X-
OUTL X+
SET U 3059 cm/s
SET K 3.0E4
SET L 0.35
DIAGnostic U V P K E output at (61,41) every 100 steps
VISCosity 0.1593 !cm2/s
/
ENDIF
/
****************************************************************
////// COMMON SECTION FOR ALL OPTIONS
****************************************************************
/
/
SYMMetry boundary at Y- surface
WALL at otherwise undefined boundaries
/
DENSity of fluid is 1.0
RELAXation factor for U = 1
/
DEBUG GEOMERTY option is OFF
/
PRINT SHEAR STRESS at WALLS with details
FLUX AVERAGE OF P, U at X+ boundary
/
FLUX DEFAult output OFF
SAVE U V P K E L MU on file '314.SAV'
OUTPut U V P K E in SELEcted subdomain NARROW
/
CONVergence U LOCAL 1.E-12
/
////////////////////////////////////////////////////////////////
******> Get non-dimensionalized output at outlet
////////////////////////////////////////////////////////////////
//
****************************************************************
IF( TYPE = NORMALIZED ) THEN
****************************************************************
/
SOLVE STEADY 30000 30000
/
WRITE U at X+ boundary; it is already normalized
/
/// dpdx = tau = 1.80330E-3 (Channel 1/2-height=1.)
STACK scale WRITE K variable with 1.1090778E+3 ! = 2/tau
WRITE K at X+ boundary and scale with STACK value
/
ENDIF
/
****************************************************************
IF( TYPE = PERIODIC ) THEN
****************************************************************
SOLVE STEADY 30000 30000
/
STACK scale WRITE U variable with 3.269E-4 ! = 1/3059 (=1/U_b)
WRITE U at X+ boundary scale with STACK value
/
/// dpdx=6.74000E3 ==> tau=dpdx*2.5 = 1.685000E4 (Channel
1/2-height=2.5)
STACK scale WRITE K variable with 1.1186944E-4 ! = 2/tau
WRITE K at X+ boundary and scale with STACK value
/
ENDIF
/
****************************************************************
IF( TYPE = DEVELOPING ) THEN
****************************************************************
/
SOLVE STEADY 20000 2000
STACK scale WRITE U variable with 3.269E-4 ! = 1/3059
WRITE U at X+ boundary scale with STACK value
/
/// Here expected tau = 136.8^2
STACK scale WRITE K variable with 1.068E-4 ! = 2/tau
WRITE K at X+ boundary and scale with STACK value
/
ENDIF
/
END
/
-Back To Top
1
2
3
4
5
6
7
8
9
10
# Back to ANSWER EXAMPLES DATABASE TOC
Related Links:
# ANSWER Applications
# ANSWER Examples
# ANSWER Express
# ANSWER Publications
# ANSWER Users
# ANSWER Price List
# Request CFDStudio/ANSWER Demo
# CFDStudio/ANSWER Tutorials
# ANSWER Manual
|